RESEARCH NOTE

Partial sum of Dedekind sums*

ZHANG Wenpeng (张文鹏) and YI Yuan (易 媛)

(The Research Center for Basic Science, Xi'an Jiaotong University, Xi'an 710049, China)

Received October 25, 1999; revised November 24, 1999

Abstract Using the mean square value formula of Dirichlet L-functions with the weight, the distribution property of the partial sum of Dedekind sums is studied. An interesting asymptotic formula is obtained.

Keywords: Dedekind sums, partial sum, mean value distribution.

For any positive integers k and h, we define Dedekind sum S(h, k) as follows:

$$S(h,k) = \sum_{n=1}^{k} \left(\left(\frac{a}{k} \right) \right) \left(\left(\frac{ah}{k} \right) \right),$$

where

$$((x)) = \begin{cases} x - [x] - \frac{1}{2}, & \text{if } x \text{ is not an integer;} \\ 0, & \text{if } x \text{ is an integer.} \end{cases}$$

Because of the importance in the study of modular form theory, the Dedekind sums have attracted a lot of attention from a number of theorists. Recently, Conrey et al. [1] studied the mean value distribution of S(h, k), and obtained a more general mean value theorem, i. e.

$$\sum_{k=1}^{k} |S(h,k)|^{2m} = f_m(k) \left(\frac{k}{12}\right)^{2m} + O\left(\left(k^{\frac{9}{5}} + k^{2m-1+\frac{1}{m+1}}\right)\log^3 k\right), \tag{1}$$

where $\sum_{k=0}^{\infty} f(k)$ denotes the summation over all f(k) such that f(k) and f(k) is given by the coefficients of Dirichlet series

$$\sum_{n=1}^{\infty} \frac{f_m(n)}{n^s} = 2 \frac{\zeta^2(2m)}{\zeta(4m)} \cdot \frac{\zeta(s+4m-1)}{\zeta^2(s+2m)} \zeta(s).$$

In this paper, we study the distribution property of the partial sums of S(h, k), and use the analytic method to give an interesting first power mean value theorem for it.

Theorem. Let k be a positive integer. Then for any real number $1 < N \le \frac{1}{2} k$, we have the

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 19531010) and the Postdoctoral Science Foundation of China.

asymptotic formula

$$\sum_{n\leq N} S(n,k) = \frac{1}{12}\phi(k)\left(\ln N + \gamma + \sum_{p \mid k} \frac{\ln p}{p-1}\right) + O\left(\frac{k2^{\omega(k)}}{N}\right) + O(Nk^{\epsilon}),$$

where $\phi(k)$ is the Euler function, γ the Euler constant, $\sum_{p \mid k}$ the summation over all different prime divisors of k, ε any fixed positive number and $\omega(k)$ the number of all different prime divisors of k.

From this theorem we can immediately deduce the following.

Corollary. Let $0 < \varepsilon < 1$ be any fixed positive number. Then for any real number N with $k^{\varepsilon} \le N \le k^{1-\varepsilon}$, the asymptotic formula

$$\sum_{n \le N} S(n, k) \sim \frac{1}{12} \phi(k) \left(\ln N + \gamma + \sum_{p \mid k} \frac{\ln p}{p - 1} \right)$$

holds uniformly, as $k \rightarrow + \infty$.

From the properties of Dedekind sums we know that

$$S(a,k) = -S(k-a,k)$$
 and $\sum_{n=1}^{k} S(a,k) = 0$.

On the other hand, from our theorem and its proof we can also see that if the k is large enough, then for almost all $1 \le a < k^{1-\epsilon}$ we have $S(a, k) \times \frac{k}{12a}$. So we have many reasons to believe the following interesting conjecture.

Conjecture. Let k be a positive integer and large enough, then for any positive integer a with $1 \le a < k^{1-\epsilon}$ and (a, k) = 1, we have

1 Some lemmas

To complete the proof of the theorem, we need two elementary lemmas.

Lemma 1. Let $k \ge 3$ be an integer with (h, k) = 1. Then we have the identity

$$S(h,k) = \frac{1}{\pi^2 k} \sum_{d \mid k} \frac{d^2}{\phi(d)} \sum_{\substack{\chi \bmod d \\ \chi(-1) = -1}} \chi(h) |L(1,\chi)|^2,$$

where χ denotes the odd character modulo d (that is, $\chi(-1) = -1$), $L(s, \chi)$ the Dirichlet L-function corresponding to character χ .

Proof. (See ref. [2]).

Lemma 2. Let k be a positive integer, and q any divisor of k with $q \ge 2$. Then for any real number $1 < N \le \frac{1}{2} k$, we have the asymptotic formula

$$\sum_{a \leq N} \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) |L(1, \chi)|^2 = \frac{\pi^2}{12k} \phi(k) \phi(q) \prod_{p \mid q} \left(1 - \frac{1}{p^2}\right) \left(\ln N + \gamma + \sum_{p \mid k} \frac{\ln p}{p - 1}\right) + O\left(\frac{\phi(q) 2^{\omega(k)}}{N} \prod_{p \mid q} \left(1 - \frac{1}{p^2}\right)\right) + O(Nq^{\epsilon}),$$

where $\sum_{a \in N}$ denotes the summation over all a such that $1 < a \le N$ and (a, k) = 1, and $\prod_{p \mid q}$ denotes the production over all different prime divisors of q.

Proof. Without loss of generality, we can assume $N \le q$. Let $A(\chi, y) = \sum_{q/\alpha < n \le y} \chi(n)$, $B(\chi, y) = \sum_{q \le n \le y} \chi(n)$. Then from the Abel's identity we have

$$L(1, \chi) = \sum_{n \leq q/a} \frac{\chi(n)}{n} + \int_{q/a}^{+\infty} \frac{A(\chi, y)}{\gamma^2} dy = \sum_{n \leq q} \frac{\chi(n)}{n} + \int_{q}^{+\infty} \frac{B(\chi, y)}{\gamma^2} dy.$$

Hence

$$\sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) |L(1, \chi)|^{2} = \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{n \leq q} \frac{\chi(n)}{n} + \int_{q/a}^{+\infty} \frac{A(\chi, y)}{y^{2}} dy \right)$$

$$\times \left(\sum_{n \leq q} \frac{\overline{\chi}(n)}{n} + \int_{q}^{+\infty} \frac{B(\overline{\chi}, y)}{y^{2}} dy \right)$$

$$= \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{n \leq q/a} \frac{\chi(n)}{n} \right) \left(\sum_{m \leq q} \frac{\overline{\chi}(m)}{m} \right)$$

$$+ \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{n \leq q/a} \frac{\chi(n)}{n} \right) \left(\int_{q}^{+\infty} \frac{B(\overline{\chi}, y)}{y^{2}} dy \right)$$

$$+ \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{m \leq q} \frac{\overline{\chi}(m)}{m} \right) \left(\int_{q/a}^{+\infty} \frac{A(\chi, y)}{y^{2}} dy \right)$$

$$+ \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\int_{q/a}^{+\infty} \frac{A(\chi, y)}{y^{2}} dy \right) \left(\int_{q}^{+\infty} \frac{B(\overline{\chi}, y)}{y^{2}} dy \right)$$

$$\equiv M_{1} + M_{2} + M_{3} + M_{4},$$

Then

$$\sum_{a \in N} \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) |L(1,\chi)|^2 = \sum_{a \in N} (M_1 + M_2 + M_3 + M_4).$$
 (2)

Now we estimate each term on the right hand side of (2).

(i) For (q, mn) = 1, from the orthogonality relation for odd character we have

$$\sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(n) \overline{\chi}(m) = \begin{cases} \frac{1}{2} \phi(q), & \text{if } n \equiv m \bmod q; \\ -\frac{1}{2} \phi(q), & \text{if } n \equiv -m \bmod q; \\ 0, & \text{otherwise.} \end{cases}$$

So from this identity we obtain

$$M_{1} = \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{n \leqslant q/a} \frac{\chi(n)}{n} \right) \left(\sum_{m \leqslant q} \frac{\chi(m)}{m} \right)$$

$$= \frac{1}{2} \phi(q) \sum_{n \leqslant q/a} \sum_{\substack{m \leqslant q \\ na = m \leqslant q}}^{'} \frac{1}{mn} - \frac{1}{2} \phi(q) \sum_{n \leqslant q/a} \sum_{\substack{m \leqslant q \\ na = -m \leqslant q}}^{'} \frac{1}{nm}$$

$$= \frac{1}{2} \phi(q) \sum_{n \leqslant q/a} \frac{1}{an^{2}} - \frac{1}{2} \phi(q) \sum_{n \leqslant q/a} \frac{1}{n(q - an)}$$

$$= \frac{1}{2} \phi(q) \sum_{n = 1}^{\infty} \frac{1}{an^{2}} + O\left(\phi(q) \sum_{n > q/a} \frac{1}{an^{2}}\right) + O\left(\phi(q) \sum_{n \leqslant q/a} \frac{1}{n(q - na)}\right)$$

$$= \frac{1}{2} \frac{\phi(q)}{a} \sum_{n = 1}^{\infty} \frac{1}{n^{2}} + O\left(\frac{\phi(q)}{a} \sum_{n > q/a} \frac{1}{n^{2}}\right) + O\left(\phi(q) \sum_{n \leqslant q/2a} \frac{1}{nq}\right)$$

$$+ O\left(\phi(q) \sum_{q/2a < n \leqslant \frac{q}{a} - 1} \frac{a}{q(q - na)}\right) + O\left(\frac{\phi(q)}{q} \frac{a}{q - a\left[\frac{q}{a}\right]}\right) =$$

$$\frac{\pi^{2}}{12} \frac{\phi(q)}{a} \prod_{p \nmid q} \left(1 - \frac{1}{p^{2}}\right) + O\left(\frac{\phi(q)}{q} \ln q\right) + O\left(\frac{a}{q - a\left[\frac{q}{a}\right]}\right). \tag{3}$$

Then from (3) we deduce that

$$\sum_{a \leq N} M_1 = \sum_{a \leq N} \left[\frac{\pi^2}{12} \frac{\phi(q)}{a} \prod_{p \mid q} \left(1 - \frac{1}{p^2} \right) + O\left(\frac{\phi(q)}{q} \ln q \right) + O\left(\frac{a}{q - a \left[\frac{q}{a} \right]} \right) \right]$$

$$= \frac{\pi^2}{12} \phi(q) \prod_{p \mid q} \left(1 - \frac{1}{p^2} \right) \sum_{a \leq N} \frac{1}{a} + O\left(\frac{N\phi(q)}{q} \ln q \right) + O\left(\frac{\sum_{a \leq N} \frac{a}{q - a \left[\frac{q}{a} \right]} \right). \tag{4}$$

Note that

$$\sum_{n \in \mathbb{N}} \frac{1}{a} = \frac{\phi(k)}{k} \left(\ln N + \gamma + \sum_{n \mid k} \frac{\ln p}{p-1} \right) + O\left(\frac{2^{\omega(k)}}{N} \right)$$
 (5)

and

$$\sum_{a \leqslant N} \frac{a}{q - a \left[\frac{q}{a}\right]} \leqslant N \sum_{u \leqslant N-1} \sum_{\substack{a \leqslant N \\ q - a} \left[\frac{q}{a}\right] = u} \frac{1}{u} \leqslant N \sum_{u \leqslant N-1} \frac{d(q - u)}{u} \ll Nq^{\epsilon}, \tag{6}$$

where we have used the estimate $d(n) \ll n^{\epsilon}$ for divisor function (see Theorem 13.12 in ref. [3]).

Combining (4), (5) and (6) we may immediately get

$$\sum_{a \leq N} M_{1} = \frac{\pi^{2}}{12} \phi(q) \prod_{p \mid q} \left(1 - \frac{1}{p^{2}}\right) \left[\frac{\phi(k)}{k} \left(\ln N + \gamma + \sum_{p \mid k} \frac{\ln p}{p - 1}\right)\right]$$

$$+ O\left(\phi(q) \prod_{p \mid q} \left(1 - \frac{1}{p^{2}}\right) \frac{2^{\omega(k)}}{N}\right) + O(Nq^{\varepsilon})$$

$$= \frac{\pi^{2}}{12} \frac{\phi(k)}{k} \phi(q) \prod_{p \mid q} \left(1 - \frac{1}{p^{2}}\right) \left(\ln N + \gamma + \sum_{p \mid k} \frac{\ln p}{p - 1}\right)$$

$$+ O\left(\phi(q) \prod_{p \mid q} \left(1 - \frac{1}{p^{2}}\right) \frac{2^{\omega(k)}}{N}\right) + O(Nq^{\varepsilon}).$$

$$(7)$$

(ii) Since $\chi(-1) = -1$ and the periodic property of the character, we can assume $B(\overline{\chi}, y) = \sum_{q < n \le 1} \overline{\chi}(n) = \sum_{q < n \le 1} \overline{\chi}(n)$. So from the orthogonality relation for character sums we have

$$\sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{n \leqslant q/a} \frac{\chi(n)}{n} \right) B(\overline{\chi}, y)$$

$$\ll \frac{1}{2} \phi(q) \sum_{\substack{n \leqslant q/a \\ m \leqslant m \neq q}} \sum_{\substack{m \leqslant q \\ n \leqslant m \neq q}} \frac{1}{n} + \frac{1}{2} \phi(q) \sum_{\substack{n \leqslant q/a \\ n \leqslant m \leqslant q}} \sum_{\substack{m \leqslant q \\ n \leqslant m \leqslant q}} \frac{1}{n} \ll \phi(q) \ln q$$

and

$$\sum_{\alpha \leq N} M_2 = \sum_{a \leq N} \int_q^{+\infty} \left[\sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{n \leq q/a} \frac{\chi(n)}{n} \right) B(\overline{\chi}, y) \right] \frac{1}{y^2} dy$$

$$\ll \sum_{\alpha \leq N} \int_q^{+\infty} \frac{\phi(q) \ln q}{y^2} dy \ll \frac{N}{q} \phi(q) \ln q.$$
(8)

(iii)

$$\sum_{a \leq N} M_{3} = \sum_{\alpha \leq N} \left[\sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{m \leq q} \frac{\overline{\chi}(m)}{m} \right) \left(\int_{q/a}^{+\infty} \frac{A(\chi, y)}{y^{2}} dy \right) \right]$$

$$= \sum_{a \leq N} \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{m \leq q} \frac{\overline{\chi}(m)}{m} \right) \left(\int_{q/a}^{q} \frac{A(\chi, y)}{y^{2}} dy \right)$$

$$+ \sum_{a \leq N} \sum_{\substack{\chi \bmod q \\ \chi \bmod q}} \chi(a) \left(\sum_{m \leq q} \frac{\overline{\chi}(m)}{m} \right) \left(\int_{q}^{+\infty} \frac{A(\chi, y)}{y^{2}} dy \right)$$

$$= \sum_{a \in N} \sum_{\substack{\chi \bmod q \\ \chi(-1) = -1}} \chi(a) \left(\sum_{m \in q} \frac{\overline{\chi}(m)}{m} \right) \left(\int_{q/a}^{q} \frac{\sum_{q/a < n \in J} \chi(n)}{y^2} dy \right) + O(N \ln q)$$

$$\ll \phi(q) \sum_{a \in N} \sum_{m \in q} \frac{1}{m} \int_{q/a}^{q} \frac{1}{y^2} \left(\sum_{\substack{q/a < n \in J \\ m = m(q)}} 1 \right) dy + N \ln q$$

$$\ll \phi(q) \sum_{m \in Q} \frac{1}{m} \int_{l}^{q} \frac{y N q^{\epsilon_{l}}}{q y^{2}} dy + N \ln q \ll N q^{\epsilon_{l}}, \tag{9}$$

where we have used the fact that for any fixed positive integers l and m, the number of the solutions of equation an = lq + m (for all positive integers a and n) is $\ll q^{\epsilon}$.

(iv) Using the same method as (iii) we can also obtain the estimation

$$\sum_{a \leq N} M_4 = \sum_{a \leq N} \left[\sum_{\substack{\chi \bmod q \\ \chi(-1) \geq -1}} \left(\int_{q/a}^{+\infty} \frac{A(\chi, y)}{y^2} \mathrm{d}y \right) \left(\int_{q}^{+\infty} \frac{B(\overline{\chi}, y)}{y^2} \mathrm{d}y \right) \right] \ll Nq^{\varepsilon}.$$
 (10)

Combining (2) and (7)—(10) we may immediately get

$$\sum_{\alpha \leq N} \sum_{\substack{\chi \bmod q \\ \chi(-1) \neq -1}} \chi(\alpha) |L(1, \chi)|^{2}$$

$$= \frac{\pi^{2}}{12} \frac{\phi(k)}{k} \phi(q) \prod_{p \mid q} \left(1 - \frac{1}{p^{2}}\right) \left(\ln N + \gamma + \sum_{p \mid k} \frac{\ln p}{p - 1}\right)$$

$$+ O\left(\phi(q) \prod_{p \mid q} \left(1 - \frac{1}{p^{2}}\right) \frac{2^{\omega(k)}}{N}\right) + O(Nq^{\epsilon}).$$

This completes the proof of Lemma 2.

2 Proof of the theorem

In this section, based on Lemmas 1 and 2 we complete the proof of the theorem. In fact from Lemma 1 we can easily get the identity

$$\sum_{n \leq N} S(n,k) = \sum_{n \leq N} \left[\frac{1}{\pi^2 k} \sum_{d \mid k} \frac{d^2}{\phi(d)} \sum_{\substack{\chi \text{ mod } d \\ \chi(-1) = -1}} \chi(n) \left| L(1,\chi) \right|^2 \right]$$

$$= \frac{1}{\pi^2 k} \sum_{d \mid k} \frac{d^2}{\phi(d)} \sum_{n \leq N} \sum_{\substack{\chi \text{ mod } d \\ \chi(-1) = -1}} \chi(n) \left| L(1,\chi) \right|^2.$$
(11)

Using the results of Lemma 2 in (11) we have

$$\sum_{n \leq N} S(n, k) = \frac{\phi(k)}{12k^2} \sum_{d \mid k} d^2 \prod_{p \mid d} \left(1 - \frac{1}{p^2}\right) \left(\ln N + \gamma + \sum_{p \mid k} \frac{\ln p}{p - 1}\right)$$

$$+ \frac{1}{\pi^2 k} \sum_{d \mid k} \frac{d^2}{\phi(d)} \left[O\left(\phi(d) \prod_{p \mid d} \left(1 - \frac{1}{p^2}\right) \frac{2^{\omega(k)}}{N}\right) + O\left(Nd^{\epsilon}\right) \right]$$

$$=\frac{1}{12}\phi(k)\left(\ln N+\gamma+\sum_{p\mid k}\frac{\ln p}{p-1}\right)+O\left(\frac{k2^{\omega(k)}}{N}\right)+O(Nk^{\epsilon}),$$

where we have used the identity

$$\sum_{d \mid k} d^2 \prod_{p \mid d} \left(1 - \frac{1}{p^2} \right) = k^2.$$

This completes the proof of the theorem.

Acknowledgements The authors express their gratitude to the referees for their very helpful and detailed comments.

References

- 1 Conrey, J. B., Fransen, E., Klein, R. et al., Mean values of Dedekind sums, Journal of Number Theory, 1996, 56: 214.
- Z. Zhang, W. P., On the mean values of Dedekind sums, Journal de Theorie des Nombres de Bordeaux, 1996, 8: 429.
- 3 Apostol T. M., Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976.