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Abstract Using the mean square value formula of Dirichlet L-functions with the weight, the distribution prop-

erty of the partial sum of Dedekind sums is studied. An interesting asymptotic formula is obtained.
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For any positive integers k¥ and h, we define Dedekind sum S(h, k) as follows:
k

st = SN2,

1
where
1 . . .
x - [%] -5 if x is not an integer;

0, if x is an integer.

((x)) = {

Because of the importance in the study of modular form theory, the Dedekind sums have attract-

1.0

ed a lot of attention from a number of theorists. Recently, Conrey et a studied the mean value

distribution of SCh, k), and obtained a more general mean value theorem, i. e.

L 2m
SIS B = fu(B(5) T + 0CS + B2r T 0k, (1)

h=1

where E denotes the summation over all % such that (k,h) =1, and fm( k) is given by the coeffi-
h

cients of Dirichlet series

i fuln) _ 5 £@2m) (s +4m -~ 1)

¢(4m) (s +2m) ¢(s).

n=1

In this paper, we study the distribution property of the partial sums of S (h, k), and use the

analytic method to give an interesting first power mean value theorem for it.

Theorem. Let k be a positive integer. Then for any real number 1 < N < Lk , we have the
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asymptotic formula

’ i w(k)
ES(H,k} = i%‘)b(k) InN + 7 + E[)Lrigl“)+ 0 (k2N )+ O(ng),

ng N pih

where ${ k) is the Euler function , ¥ the Euler constant , 2 the summation over all different prime di-
ptk
visors of k, € any fixed positive number and w (k) the number of all different prime divisors of k.

From this theorem we can immediately deduce the following.

Corollary. Let 0 < ¢ <1 be any fixed positive number . Then for any real number N with k° <
N<k'™¢, the asympiotic formula

S)sCnok) ~ () (N 4 7+ >

ng N pik
holds uniformly, as k—> + o .

From the properties of Dedekind sums we know that

k!
S(a,k) =~ S(k - a,k) and D, S(a,k) = 0.

a=1

Oa the other hand, from our theorem and its proof we can also see that if the &k is large enough,

then for almost all 1< a < k'~ we have S(a, k)X L So we have many reasons to believe the

12a

following interesting conjecture .

Conjecture. Let k be a positive integer and large enough , then for any positive integer a with

l<a<k' “and (a, k) =1, we have

S(a, k) > 0.

1 Some lemmas
To complete the proof of the theorem, we need two elementary lemmas.

Lemma 1. [et k=3 be an integer with (h, k) =1. Then we have the identity

2
’

SCh,k) =

dZ
K—%; D ST x| L,y
1(—;n{.d:d-1

where X denotes the odd character modulo d (that is, X{(~1)= =1), L(s, X) the Dirichlet L-

Junction corresponding to character X .
Proof. (See ref. [2]).

Lemma 2. Let k be a positive integer, and q any divisor of k with ¢ =2. Then for any real

number 1 < N< —k, we have the asymptotic formula
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' 2 _— 1
33 x@i, ol = Gps@ 1= (nn sy s S )

ax N ymodg oly Ik p - 1
== -1

+ o(ﬂ—‘iz—vz—w(—k)ﬂ(l _;1—2—))+ 0(Ng),

plg

where E denotes the summation over all a such that 1 < a<Nand (a, k)=1, and ﬂ denotes
ag NV plg

the production over all different prime divisors of q.

Proof. Without loss of generality, we can assume N<q. Let A(X, ¥) = S n),

P,
B(X, y) = Z X(n). Then from the Abel s identity we have
+°°A(X, ) +°°B(X, )
L(i, 1) = Em—HJ SALLEES T E“"HJ SALAN A W
] neqra T q/a y2 el 2 y2
Hence
vo A(X, ¥)
> @, o= 3 xm(Z’“”Mj —f—dy]
Xmiodq Ymodq nega T q/a y*
X(-1D=-1 X(-1) = -\
X += B(X, y)
x[zX(nn)+J 7 dy]
nsq q ¥
AN ( x(n))( X(m))
mer_:q X(a) < q'a n ’”Z(Jq m
X(-1) = -1
+= B(X, y)
_— X(a)(EX(n))U 2y YJ
T
X = A(X, y)
.S X(“)(E—_M))U o2 J
Xmodg m<q m 9/a yz
X(-1)=-1
+ A(X! ) +°°B(E, )
1 )U zydy]U 2 y]
x(’.‘{n)mi_l q/a y q }/
EM1+M2+M3+M4,
Then
2’ Z X(a)'L(l,X)’z = Z'(M)+M2+M3+M4). (2)

as N Ymodg ag N
-1 = -1

Now we estimate each term on the right hand side of (2).

(i) For (g, mn) =1, from the orthogonality relation for odd character we have
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1 .
—2‘¢(q>, if n = m modg;
(g)}lq X(n) x(m) = —%szS(q), £ 1 = mmodg;
x(-1)=-1
0, otherwise.

So from this identity we obtain

M, = > X(a)(z n))(EJZTm))
¢<q>§] 2',,% 740 212'7:;
e
zgsﬁ(q)ga - z—i‘ﬁ(q)E 77,_]_—”)
L, 1 ' 1
03 Lo oS ool S )
- HES Lo FE T ) (’”q’.? m
« . $(q) a
0(¢(q)q/zuii-lm)+0{ 1 q—a[f]]:
a

ﬁzﬂ‘q—n( Lz) 0(?%;&lnq)+ 0

ply

q_aq]. (3)

a

Then from (3) we deduce that

;M,:ZI:R $al 7y (1 )+0(Mlnq)+0( ‘:[ZZ“]H

ply

Note that
,-1_ ¢(k)( lnp ) (2w(k))
;a_ p lnN+)’+§_}p_1+0 N (5)
and
v, @ o d(q - u)
2 <ND, 2 —<NY < Ng°, (6)
ag N g - a[_‘]_] ug N-1 as N u v M-t u
a - 2] -u
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where we have used the estimate d( n )< r® for divisor function (see Theorem 13.12 in ref. [3]).

and

Combining (4), (5) and (6) we mnay immediately get

ag ¥

> M 1295((1)1]( %)[—>(1HN+7+ np_

—~M¢(q)n( )(1nN+Y+E—L)
ol plk
(¢( )H( 1) (“) 0(Ng) (7)
- + .
q L » N q
(ii) Since X( —1) = — 1 and the periodic property of the character, we can assume B(X, y)
2 X( n) = E X (n). So from the orthogonality relation for character sums we have
> xta) B, )
Xmodq nsqg/a n
HD = -
1 1 ’v’ 1
< 5 ¢(q) 2 Z o 5 Py ;<<¢(q)lnq
u<q/ mznqs)q ugwq;a "Iln(f)q
S M, = EJ > X(a)( > Al )B(x y)]
<N as N q Xmodg ngg/a
xX(-1)=-1
+® 1
< Z J —((L)Z—nqdy < ;St(q)lnq (8)
ax N q -
(iii)

X(—l):-l
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| — >0 x(n)
-3 N a SR e e 0(Ning)

as N Ymdyg LY m ¢/a 2

¥

x(-1)=-1

<$(q) EE#J‘(I Lz( S 1)dy+Nlnq

as N mgg

1 {9 yNg"
<8(g) 2] ‘,;L —dy + Ning < N¢°, (9)
meg e

where we have used the fact that for any fixed positive integers [ and m, the number of the solutions

of equation an = Ig + m (for all positive integers a and n) is < ¢ .
{iv) Using the same method as {iii) we can also obtain the estimation

DETESNID) U”“i ”dy}[[”@@]kw. (10)

as N Xmodq 9 ¥-
X-1)=-

Combining (2) and (7)—(10) we may immediately get

> x| L, 0l

ag N Amody
X(-1)=-1

f—

=”—2—u¢(q)]‘;!( Pl)(lnN+)’+ Z. erl&l)

zw(k)

4 0(¢(q)H(1 - -15) < )+ 0(Ng).

plg

This completes the proof of Lemma 2.
2 Proof of the theorem

In this section, based on Lemmas 1 and 2 we complete the proof of the theorem. In f{act from

Lemma 1 we can easily get the identity

>stnk) = 2

ng N ng N dHr

SN lia, x)\z]

Xmodd
x(~t)=-1

Z > x(wra, ol (11)

ns N Xmodd
x(-1)= -1

2
$(d)

1
T nlk %:,;
Using the results of Lemma 2 in (11) we have

E’S(n,k)=¢(k)z ZH( )(lnN+7+E—lE_L1)

2
ne N 12k dik pid plk
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. #; ¢?;)[ 0(¢(d)],,.ld(l _ #)zw[;k>)+ O(NdE)]

1 Inp ) <k2‘"““)) .
_12¢(k)(1nN+ v+ 25 ) o 25—+ 0w,

where we have used the identity

Edzn(l - —15) = K

dlk pld P

This completes the proof of the theorem.
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